metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Hong-Xing Wang,^{a,b}* Ying-Jie Li,^a Hong-Fei Wu,^a Hui-Chao Zhou,^a Feng-Ying Geng^a and Ren-Qing Gao^a

^aDepartment of Chemistry, College of Sciences, Tianjin University, Tianjin 300072, People's Republic of China, and ^bState Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China

Correspondence e-mail: hongxing_wang@hotmail.com

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.004 Å R factor = 0.028 wR factor = 0.081 Data-to-parameter ratio = 14.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

1-{[*N*-Methyl-*N*-(4-methylphenyl)amino]methyl}ferrocene

In the title compound, $[Fe(C_5H_5)(C_{14}H_{16}N)]$, the substituted cyclopentadienyl ring is essentially perpendicular to the plane of the benzene ring [dihedral angle = 90.7 (2)°]. There are no important intermolecular interactions.

Comment

Recently, we have reported a series of tertiary ferrocenylamines (Li *et al.*, 2005; Wang, Li & Hou, 2005; Wang, Li, Wu *et al.*, 2005). As an extension of our work on the structural characterization of tertiary amines, the title compound, (I), is reported here.

In the compound, all the bond lengths are within normal ranges (Allen *et al.*, 1987). Atom N1 and the benzene ring are almost coplanar, with a mean deviation of 0.0085 Å. The dihedral angle between the benzene ring and the plane through atoms C11, N1 and C12 is 27.7°. Owing to the steric effect between the ferrocenyl and benzene groups, the C10–C11–N1 angle is widened to 113.59 (18)°. No obvious intermolecular interactions are observed.

Experimental

To a stirred solution of *N*-(*p*-methylphenyl)aminomethylferrocene (1.525 g, 5 mmol) and 37% aqueous formaldehyde (4 ml, 50 mmol) in acetonitrile (30 ml) was added sodium cyanoborohydride (0.95 g, 15 mmol). A dark residue separated. The reaction mixture was stirred for 30 min; glacial acetic acid was added dropwise until the solution tested neutral on wet pH paper. Stirring was continued for another 1 h. The reaction mixture was poured into diethyl ether (80 ml) and then washed with 1 *N* KOH and saturated brine. The ether solution was dried with K₂CO₃ and evaporated *in vacuo* (yield 82%). Yellow single crystals suitable for X-ray analysis were obtained by slow evaporation of an ethyl acetate solution at room temperature over a period of a week. ¹H NMR (CDCl₃, p.p.m.): δ 7.03 (*d*, 2H), 6.71 (*d*,

 $\ensuremath{\mathbb{C}}$ 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Received 21 September 2005 Accepted 12 October 2005

Online 19 October 2005

2H), 4.22 (*s*, 2H), 4.14 (*s*, 5H), 4.13 (*s*, 2H), 4.07 (*s*, 2H), 2.81 (*s*, 3H), 2.25 (*s*, 3H). Analysis calculated for C₁₉H₂₁FeN: C 71.49, H 6.33, N 4.39%; found: C 71.39, H 6.91, N 4.60%.

 $D_x = 1.308 \text{ Mg m}^{-3}$

Cell parameters from 3742

Mo $K\alpha$ radiation

reflections

 $\theta = 2.7 - 26.5^{\circ}$ $\mu = 0.92 \text{ mm}^{-1}$

T = 293 (2) K

Prism, yellow $0.38 \times 0.32 \times 0.22 \text{ mm}$

Crystal data

 $\begin{bmatrix} \text{Fe}(\text{C}_{5}\text{H}_{5})(\text{C}_{14}\text{H}_{16}\text{N}) \end{bmatrix} \\ M_{r} = 319.22 \\ \text{Monoclinic, } P_{2_{1}}/c \\ a = 9.587 \text{ (5) Å} \\ b = 12.569 \text{ (7) Å} \\ c = 13.950 \text{ (7) Å} \\ \beta = 105.311 \text{ (6)}^{\circ} \\ V = 1621.3 \text{ (15) Å}^{3} \\ Z = 4 \\ \end{bmatrix}$

Data collection

Bruker APEX-II CCD area-
detector diffractometer2862 independent reflections φ and ω scans2447 reflections with $I > 2\sigma(I)$ φ and ω scans $R_{int} = 0.019$ Absorption correction: multi-scan
(SADABS; Sheldrick, 1996) $\theta_{max} = 25.0^{\circ}$ $T_{min} = 0.681, T_{max} = 0.816$ $k = -14 \rightarrow 14$ 8512 measured reflections $l = -16 \rightarrow 13$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0432P)^2$
$R[F^2 > 2\sigma(F^2)] = 0.028$	+ 0.3894P]
$wR(F^2) = 0.081$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.05	$(\Delta/\sigma)_{\rm max} = 0.001$
2862 reflections	$\Delta \rho_{\rm max} = 0.19 \ {\rm e} \ {\rm \AA}^{-3}$
192 parameters	$\Delta \rho_{\rm min} = -0.22 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	Extinction correction: SHELXL97
	Extinction coefficient: 0.0118 (10)

Table 1

N1-C13	1.398 (3)	C10-C11	1.508 (3)
N1-C12 N1-C11	1.448 (3) 1.458 (3)	C16-C17	1.516 (4)
C13-N1-C12 C13-N1-C11	118.8 (2) 119.65 (18)	C12-N1-C11 N1-C11-C10	114.1 (2) 113.59 (18)
C7-C6-C10-C11 C12-N1-C13-C14	-178.97 (19) -5.3 (3)	C11-N1-C13-C14	-153.5 (2)

All H atoms were initially located in a difference Fourier map. The methyl H atoms were then constrained to an ideal geometry with a C-H distance of 0.96 Å and $U_{iso}(H) = 1.5U_{eq}(C)$; the group was

View of the molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented by circles of arbitrary size.

allowed to rotate freely about the C–C bond. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C–H distances in the range 0.93–0.98 Å and $U_{\rm iso}({\rm H}) = 1.2U_{\rm eq}({\rm C})$.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997);; data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1997); software used to prepare material for publication: *SHELXTL*.

We are indebted to the Natural Science Foundation of Tianjin City, People's Republic of China, for financial support (grant no. 033609011).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans 2, pp. S1–19.

Bruker (1997). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Li, Y.-J., Wang, H.-X. & Wu, H.-F. (2005). Acta Cryst. E61, m1579-m1580.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997). SHELXL97 and SHELXL97. University of Göttingen, Germany.

Wang, H.-X., Li, Y.-J. & Hou, J.-F. (2005). Acta Cryst. E61, m1785-m1786.

Wang, H.-X., Li, Y.-J., Wu, H.-F., Zhou, H.-C., Gao, R.-Q. & Geng, F.-Y. (2005). Acta Cryst. E61, m1871–m1872.