Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Hong-Xing Wang, ${ }^{\text {a, },{ }^{*} * \text { Ying-Jie }}$ Li, ${ }^{\text {a }}$ Hong-Fei Wu, ${ }^{\text {a }}$ Hui-Chao Zhou, ${ }^{\text {a }}$ Feng-Ying Geng ${ }^{\text {a }}$ and Ren-Qing Gao ${ }^{\text {a }}$

${ }^{\text {a }}$ Department of Chemistry, College of Sciences, Tianjin University, Tianjin 300072, People's Republic of China, and ${ }^{\mathbf{b}}$ State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China

Correspondence e-mail:
hongxing_wang@hotmail.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.028$
$w R$ factor $=0.081$
Data-to-parameter ratio $=14.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

1-\{[N-Methyl-N-(4-methylphenyl)amino]methyl\}ferrocene

In the title compound, $\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}\right)\right]$, the substituted cyclopentadienyl ring is essentially perpendicular to the plane of the benzene ring [dihedral angle $=90.7(2)^{\circ}$]. There are no important intermolecular interactions.

Comment

Recently, we have reported a series of tertiary ferrocenylamines (Li et al., 2005; Wang, Li \& Hou, 2005; Wang, Li, Wu et al., 2005). As an extension of our work on the structural characterization of tertiary amines, the title compound, (I), is reported here.

(I)

In the compound, all the bond lengths are within normal ranges (Allen et al., 1987). Atom N1 and the benzene ring are almost coplanar, with a mean deviation of $0.0085 \AA$. The dihedral angle between the benzene ring and the plane through atoms $\mathrm{C} 11, \mathrm{~N} 1$ and C 12 is 27.7°. Owing to the steric effect between the ferrocenyl and benzene groups, the C10$\mathrm{C} 11-\mathrm{N} 1$ angle is widened to $113.59(18)^{\circ}$. No obvious intermolecular interactions are observed.

Experimental

To a stirred solution of N-(p-methylphenyl)aminomethylferrocene ($1.525 \mathrm{~g}, 5 \mathrm{mmol}$) and 37% aqueous formaldehyde ($4 \mathrm{ml}, 50 \mathrm{mmol}$) in acetonitrile (30 ml) was added sodium cyanoborohydride (0.95 g , 15 mmol). A dark residue separated. The reaction mixture was stirred for 30 min ; glacial acetic acid was added dropwise until the solution tested neutral on wet pH paper. Stirring was continued for another 1 h . The reaction mixture was poured into diethyl ether (80 ml) and then washed with 1 NKOH and saturated brine. The ether solution was dried with $\mathrm{K}_{2} \mathrm{CO}_{3}$ and evaporated in vacuo (yield 82%). Yellow single crystals suitable for X-ray analysis were obtained by slow evaporation of an ethyl acetate solution at room temperature over a period of a week. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, p.p.m.) : $\delta 7.03(d, 2 \mathrm{H}), 6.71(d$,

Received 21 September 2005
Accepted 12 October 2005
Online 19 October 2005
$2 \mathrm{H}), 4.22(s, 2 \mathrm{H}), 4.14(s, 5 \mathrm{H}), 4.13(s, 2 \mathrm{H}), 4.07(s, 2 \mathrm{H}), 2.81(s, 3 \mathrm{H})$, $2.25(s, 3 H)$. Analysis calculated for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{FeN}$: C 71.49, H 6.33, N 4.39%; found: C 71.39, H 6.91, N 4.60%.

Crystal data

$\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}\right)\right]$
$M_{r}=319.22$
Monoclinic, $P 2_{1} / c$
$a=9.587$ (5) \AA
$b=12.569$ (7) \AA
$c=13.950$ (7) \AA
$\beta=105.311$ (6) ${ }^{\circ}$
$V=1621.3(15) \AA^{3}$
$Z=4$

$$
D_{x}=1.308 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 3742 reflections
$\theta=2.7-26.5^{\circ}$
$\mu=0.92 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, yellow
$0.38 \times 0.32 \times 0.22 \mathrm{~mm}$
Data collection
Bruker APEX-II CCD areadetector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.681, T_{\text {max }}=0.816$
8512 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.028$
$w R\left(F^{2}\right)=0.081$
$S=1.05$
2862 reflections
192 parameters
H -atom parameters constrained

2862 independent reflections
2447 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.019$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-9 \rightarrow 11$
$k=-14 \rightarrow 14$
$l=-16 \rightarrow 13$

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0432 P)^{2}\right.
$$

$+0.3894 P]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$ 。
$\Delta \rho_{\max }=0.19 \mathrm{e}^{\circ}{ }^{-3}$
$\Delta \rho_{\min }=-0.22$ e \AA^{-3}
Extinction correction: SHELXL97 Extinction coefficient: 0.0118 (10)

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

N1-C13	$1.398(3)$	$\mathrm{C} 10-\mathrm{C} 11$	$1.508(3)$
$\mathrm{N} 1-\mathrm{C} 12$	$1.448(3)$	$\mathrm{C} 16-\mathrm{C} 17$	$1.516(4)$
$\mathrm{N} 1-\mathrm{C} 11$	$1.458(3)$		
$\mathrm{C} 13-\mathrm{N} 1-\mathrm{C} 12$	$118.8(2)$	$\mathrm{C} 12-\mathrm{N} 1-\mathrm{C} 11$	$114.1(2)$
$\mathrm{C} 13-\mathrm{N} 1-\mathrm{C} 11$	$119.65(18)$	$\mathrm{N} 1-\mathrm{C} 11-\mathrm{C} 10$	$113.59(18)$
$\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 10-\mathrm{C} 11$	$-178.97(19)$	$\mathrm{C} 11-\mathrm{N} 1-\mathrm{C} 13-\mathrm{C} 14$	$-153.5(2)$
$\mathrm{C} 12-\mathrm{N} 1-\mathrm{C} 13-\mathrm{C} 14$	$-5.3(3)$		

All H atoms were initially located in a difference Fourier map. The methyl H atoms were then constrained to an ideal geometry with a $\mathrm{C}-\mathrm{H}$ distance of $0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\mathrm{eq}}(\mathrm{C})$; the group was

Figure 1
View of the molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented by circles of arbitrary size.
allowed to rotate freely about the $\mathrm{C}-\mathrm{C}$ bond. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.93-$ $0.98 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997);; data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

We are indebted to the Natural Science Foundation of Tianjin City, People's Republic of China, for financial support (grant no. 033609011).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans 2, pp. S1-19.

Bruker (1997). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Li, Y.-J., Wang, H.-X. \& Wu, H.-F. (2005). Acta Cryst. E61, m1579-m1580.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97 and SHELXL97. University of Göttingen, Germany.
Wang, H.-X., Li, Y.-J. \& Hou, J.-F. (2005). Acta Cryst. E61, m1785-m1786.
Wang, H.-X., Li, Y.-J., Wu, H.-F., Zhou, H.-C., Gao, R.-Q. \& Geng, F.-Y. (2005). Acta Cryst. E61, m1871-m1872.

